

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION: BACHELOR OF SCIENCE

BACHELOR OF HUMAN NUTRITION

BACHELOR OF ENVIRONMENTAL HEALTH SCIENCES

BACHELOR OF HEALTH INFORMATION SYSTEMS MANAGEMENT
BACHELOR OF MEDICAL LABORATORY SCIENCES

QUALIFICATION CODE: 07BOSC,
08BOHN, 08BOHS, 07BHIS, 08BBMS

COURSE CODE: GNP501S
HSP511S
COURSE NAME: GENERAL PHYSICS 1A
HSP511S
HEALTH SCIENCE PHYSICS

SESSION: JULY 2023
PAPER: THEORY

DURATION: 3 HOURS
MARKS: 100

SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATIONS QUESTION PAPER								
EXAMINER(S)	DR MUNYARADZI ZIVUKU							
*	DR VAINO INDONGO							
MODERATOR:	PROF. DIPTI SAHU							

INSTRUCTIONS:

- 1. Answer all the questions in the booklet provided
- 2. Show clearly all the steps used in the calculations
- 3. All written work MUST be done in blue or black ink and sketches must be done in pencils.

PERMISSIBLE MATERIALS

Non-Programmable Calculator

THIS MEMO CONSISTS OF 7 (INCLUDING THIS FRONT PAGE)

SECTION A (40)

QUESTION 1 (40)

Multiple choice questions types: Each question carries two marks

1.	Dimensional analysis is a method used to	(2)
2.	is a unit of force? A. kg.m/s² B. kg C. m/s D. cm³	(2)
3.	Which of the following physical quantity is dimensionless? A. Momentum B. Strain C. Stress D. Force	(2)
4.	The dimensional formula of momentum is A. MLT B. MLT ⁻¹ C. M ^o L ^o T ⁻¹ D. M ⁻¹ LT ⁻¹	(2)
5.	The dimensions of Force are; A. MLT B. ML ² T ⁻² C. MLT ⁻² D. ML ² T ⁻¹	(2)
6.	The rate of change of displacement of a particle is referred to as	(2)

7.	 A. speed has no units B. they use different units to represent their magnitude C. speed shows only magnitude, while velocity represents both magnitude (strength) and direction D. velocity has a higher magnitude 										
8.	If vector a A40k B. 40 k C. 0 D. None o			e scalar p	product	is		(2)			
9.	Which of the A. velocity B. velocity C. speed in D. speed of	can be ne is a vecto s a scalar	egative r	ue?			(2)				
10.	The forces of 20 N towards north and 12 N towards south are acting on an object. What will be resultant force? A. 32 N toward north B. 20 N towards north C. 32 N towards south D. 8 N towards north										
11.	A toy car m velocity? A. 1 m/s	noves 8 m B. 2 m/				_	is the car's	(2)			
12.	A train mov 0.5 h? A. 10 km	ves at a co B. 20		locity of 5		. How far v D. 50 km	will it move in	(2)			
13.	A boat can move at a constant velocity of 8 km/h in still water. How long will it										
	take for the boat to move 24 km?										
	A. 2 h	B. 3 h	C. 4 h	D. 6	6 h						
14.	called:						one another is	(2)			
	A. Cohesio	on E	Polarity	/	C. Adh	iesion	D. Viscosity				

USE THE GRAP BELOW TO ANSWER QUESTION 15 AND 16

The graph represents the relationship between velocity and time for an object moving in a straight line. Use this graph to answer questions 14 and 15

15. Which of the following statements is true?

(2)

- A. The object speeds up
- B. The object moves with a constant velocity
- C. The object stays at rest
- D. The object is in free fall
- 16. What is the acceleration of the object after 5 s?

(2)

- A. 0 m/s^2
- B. 3 m/s
- C. 4 m/s²
- D. 5 m/s^2
- 17. A projectile is fired at an angle of 60.0° above the horizontal with an initial speed of 30.0 m/s. How long does it take the projectile to reach the highest point in its trajectory? (2)

A. 1.5 s

- B. 2.7 s
- C. 6.2 s
- D. 9.8 s
- 18. What is the force of gravity that is exerted on earth by the sun? Given that the mass of the sun and the earth are 1.99×10^{30} kg and 5.97×10^{24} kg respectively. The distance between the sun and the earth is 1.496×10^{-11} m and G is 6.67×10^{-11} N.m²/kg²

A. 3.54 x 10²²N

B. 4.54 x 10²¹N

C. 3.45 x 10²²N

D. 4.54 x 10²²N

19. Water is flowing in a fire horse with a velocity of 1.0 m/s and a pressure of 200 000 Pa. At the nozzle the pressure decreases to atmospheric pressure (101 300 Pa), there is no change in height. The density of water is 1000 kg/m3 and gravity g is 9.8 m/s2.

Using Bernoulli principle, the velocity of the water exiting the nozzle. (2)

A. 12 m/s

B. 14 m/s^2

C. 13.5 m/s

D. 14m/s

- 20. Which of the following statement is incorrect about Newton Laws (2)
- A. Newton's first law is sometimes known as the law of inertia
- B. Newton's second law is states that the force is equal to the mass multiply by the acceleration of the object.
- C. Newton's second law states that the force is inversely proportion to acceleration of the object
- D. None of the above

SECTION B

QUESTION 2 (15)

2.1 Derive the dimensions of:

- (i) pressure (2)
- (ii) surface tension (2)
- 2.2 Use dimensionally analysis to prove whether kinetic energy is equals to gravitational potential energy. (3)
- 2.3 The force F of the wind on the moving car is certainly affected by its velocity \mathbf{v} of the car density ρ and the surface area A of the car directly exposed to the wind's direction. Use dimensional analysis to show the equation of force. (8)

QUESTION 3 (10)

3.1 Given three vectors;

$$a = i + 2j + 3k$$
,

$$b = 2i + 3j + k$$

$$c = 7i + 2j + k$$

(i) Evaluate vector
$$\mathbf{p}$$
, such that $\mathbf{p} = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$ (8)

(ii) From (i), find a unit vector n in the direction of p. (2)

QUESTION 4 (20)

4.1 An object is projected from a height of 100m above the ground at an angle of 30° to the horizontal with a velocity of 100m/s.

Calculate;

(ii) the distance the object travels from the cliff (2)

4.2 Two blocks of mass 0.1 kg and 0.2 kg approach each other on a horizontal plane at velocities of 0.4 and 1m/s respectively. If the blocks collide and remain together, calculate the joint velocity after collision. (5)

4.3 An object of mass m is attached to a spring of length L. If the spring is extended by a distance e and released, show that the period of oscillation is given by;

T =
$$2\pi \sqrt{\frac{e}{g}}$$
, where g is the acceleration due to gravity. (3)

- 4.4 State any two assumptions considered in studying fluid dynamics. (2)
- 4.5 When 620 g of water is cooled from $92.2^{\circ}C$ to $4.5^{\circ}C$ and the specific heat capacity, c, of water is $4186 \, \text{Jkg}^{-1}C^{-1}$.

Determine the:

- (i) Amount of heat transferred in Kilo Joules (3)
- (ii) initial temperature of water in Fahrenheit (1)
- (iii) final temperature of water in Kelvin (1)

END OF THE EXAMINATION PAPER